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Abstract— Crew time is a precious resource due to the ex-
pense of trained human operators in space. Efficient caretaker
robots could lessen the manual labor load required by frequent
vehicular and life support maintenance tasks, freeing astronaut
time for scientific mission objectives. Humanoid robots can
fluidly exist alongside human counterparts due to their form,
but they are complex and high-dimensional platforms.

This paper describes a system that human operators can use
to maneuver Robonaut 2 (R2), a dexterous humanoid robot
developed by NASA to research co-robotic applications. The
system includes a specification of constraints used to describe
operations, and the supporting planning framework that solves
constrained problems on R2 at interactive speeds. The paper is
developed in reference to an illustrative, typical example of an
operation R2 performs to highlight the challenges inherent to
the problems R2 must face. Finally, the interface and planner is
validated through a case-study using the guiding example on the
physical robot in a simulated microgravity environment. This
work reveals the complexity of employing humanoid caretaker
robots and suggest solutions that are broadly applicable.

I. INTRODUCTION

Robonaut 2 (R2), shown in Figure 1, is a complex
humanoid robot capable of dexterous manipulation [1]. It is
composed of an anthropomorphic upper body and two leg-like
appendages that each feature seven degrees-of-freedom, for a
total of 34 degrees-of-freedom in the main body. Its twelve
degree-of-freedom hands can execute dexterous manipulation
tasks like using human tools and handling fabric surfaces [2].
The end-effector on the legs has a multi-purpose gripper that
can attach to the ubiquitous handrails in the International
Space Station (ISS). R2 is designed to be an assistant to the
crew currently stationed on-board the ISS, as well as a test-
bed for robotic caretaker technology that is required in future
space exploration [3]. Repetitive and dangerous operations
required for space exploration could be accomplished by
R2 and other robots, allowing more time for astronauts
to achieve scientific mission objectives. For example, the
logistics and organization of cargo takes an immense fraction
of crew time and is also physically strenuous. In future
space exploration, robots like R2 could unload a dormant
logistics module for a spacecraft in cislunar orbit in advance
of crew arrival. On the ISS today, cargo is stored within
a general purpose container called a Cargo Transfer Bag
(CTB). R2 could retrieve and manipulate a desired CTB
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Fig. 1. R2 executing the CTB retrieval scenario. R2 has to respect
many different constraints when planning motions along the course of the
operation. For example, when holding the CTB with both hands, there is a
constraint imposed on the hands as to not drop the CTB. The system allows
consideration of constraints such as the example given and provides means
for the operator to easily specify novel ones without leaving the high-level
interface. There are four stills superimposed in this image, from back to
front: R2 approaching the cargo rack, R2 unbuckling the restraint holding
the CTB, R2 grabbing the CTB with both hands, and the final image of R2
bimanually manipulating the CTB.

from a logistics module to another location. CTB retrieval
will be used as an illustrative example throughout the paper,
as it is representative of the complexities that arise when
commanding a system like R2. The goal of this work is to
create an interface and supporting technology necessary so
that an expert operator can quickly and intuitively describe
operations, like CTB retrieval, and the motion constraints
inherent to the operation’s subtasks. The system described
simplifies the job of the operator so that it is possible to
command a complex robot to do useful work.

This paper describes a system to control R2 efficiently
and effectively in practice. An interface that enables an
expert operator to define and select specific goals and/or
path constraints while operating the robot is presented. The
minimum requirements of what the interface should offer
and the conveniences it affords to operators to save time
communicating their commands is discussed. One of the
critical facets of commanding a robot is the specification
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of an operation to execute. An operation is a sequence of
subtasks, each composed of a start pose and goal constraints,
along with a set of constraints that impose geometric limits on
the robot throughout the course of the operation. Operations
are distinct from tasks as the operator plans the sequence of
subtasks to achieve a goal, not the system itself. In the case
of R2 and CTB retrieval, an operation that requires bimanual
manipulation of the bag induces a constraint between the
robot’s palms. A novel constraint specification and required
techniques to make motion planning tractable in operations
such as CTB retrieval are presented. The motion planner
takes in a specification of a subtask and outputs a sequence of
waypoints, each a full configuration of the robot. To overcome
the dimensionality and constraints of the planning problem,
the motion planner is a sampling-based, constrained motion
planning algorithm [4]. The unique aspects of the motion
planner and how the constraint specification is leveraged is
also discussed.

The paper is organized as follows. The challenges of mak-
ing a complex, humanoid robot execute complex operations
are described in Section II. The minimum requirements of
the interface and the capabilities it provides are covered
in Section III. The description of the constraints on the
operation, how the constraints are processed, and how they are
used for planning is described in Section IV. The system is
validated through completing the CTB retrieval operation on
the physical robot in a simulated microgravity environment.
Figure 1 shows R2 throughout the execution of the CTB
retrieval scenario; the details of the study are discussed in
Section V. Finally, concluding remarks and a discussion of
future directions are left in Section VI.

II. CHALLENGES AND RELATED WORK

There are many challenges to consider when designing
a system to command a robot like R2. This problem is an
extreme case of a very high-dimensional system performing
nominally hard tasks in tandem, such as mobile manipulation,
constrained motion planning, and dexterous manipulation.
Solving each of these together, and having a human operator
describe these complex problems is an unresolved problem [5].
At the DARPA Robotics Challenge (DRC), operator control
was paramount to the success of the teams, and operator
errors were a large source of problems in execution [6]–
[9]. This trend can be seen in other robotics competitions
and for other form-factors of robotic platforms [10], [11].
The interface must afford the operator the ability to craft
commands with a level of complexity suited towards the
motion being planned [12]. Complexity arises from the
operation at hand and the robot itself, and creates a barrier
in usability between the operator and the motion of the robot.
The novel system described here is one way to bridge the
two together.

The guiding example of CTB extraction is typical of
operations R2 performs. Although simple for a human to
complete, this operation begets a multitude of problems for
a robot to consider. These problems range over the entire
operation, starting with approaching the CTB, grasping it,

and continuing through the following manipulation subtasks.
When approaching the cargo rack that contains the CTB,
there is the issue of positioning the torso relative to the
CTB. Torso positioning is critical, as it determines the space
where the workspace of the arms and the CTB overlap. A
small overlap means little room for manipulation. If R2 has
both of its gripping end-effectors grasped onto handrails for
leverage, then there is a constraint on the motion of the
torso, as it cannot move further than the extent of either of
the legs. Constraints like these must be taken into account
when planning. Locating the pose of the CTB relative to the
robot and grasping it is another set of problems; exteroceptive
sensors must detect the CTB, and the dexterous hands of R2
must grasp the CTB’s pliant canvas straps. The CTB is an
unwieldy object; to manipulate it R2 must grab onto both
sides of the bag. When grasped, the relative motion of the
arms are constrained to one another; they must maintain the
same relative position to not drop the CTB. Problems like
these generalize to a larger class of issues that are faced
when planning for manipulation operations with a complex
humanoid robot. Representing these problems and solving
them is critical to the usability of the robot.

The old-fashioned and error-prone way of solving the above
problem might be something like the following. First, a path
representing the motion of the CTB would be generated. Each
pose of the CTB along the path also has a desired pose for
both the left and right hands relative to itself. A configuration
of the arms would be found that satisfies the desired poses for
each waypoint. This could potentially generate a valid path
for the arms, however this is not likely because there are no
guarantees that the identified configurations are connectable.
Additional constraints could also not be considered, nor larger
plans that involve other parts of R2’s body. Any approach
must consider the constraints as a whole, and provide a way
for the user to specify them in a unified way.

III. OPERATOR INTERFACE

Complex operations like CTB retrieval can be simplified
into a sequence of subtasks, in which the operator specifies
a set of goal constraints on a set of frames, and a set of
constraints that apply through the entire subtask. The job of
the system is to abstract away the details of motion planning
by providing the ability to quickly define constraints imposed
on the desire motion of the robot. In this section the aspects of
the interface that enable the operator to efficiently command
R2 are covered. This novel solution offers great improvements
in the ability to define constraints, update allowable collisions,
automate trivial processes, and interact with virtual objects.
Constraints are left as an abstraction in this section, they are
covered in more detail in Section IV.

While accomplishing complex operations using
MoveIt! [13] is possible, it is extremely burdensome
on the operator. The operator interface, shown in Figure 2,
features a minimalist design as to reduce the number of
button and mouse clicks it takes an operator to define, plan,
and execute a subtask. Similar to the MoveIt! interface, a
virtual model of the robot with a drag-and-drop overlay



(see Figure 2f) enables the robot’s end-effectors to be
dragged into a desired pose. The desired pose is generalized
by the interface into a constraint, which can be tuned by
the operator to define more general goal conditions. The
capabilities of this interface have been extended by enabling
the virtual model to be toggled with a single button click
and the overlay to be customized to enable and disable the
various end-effectors. The minimalist design requirement
also complements the desire to maximize operator’s view of
the live sensor data streaming from the robot. Minimizing
the size of the motion planning GUI and eliminating
complicated menu items creates a bare-bones operator
interface designed to quickly and efficiently move the robot
from one configuration to another.

A. Selecting and Appending Constraints

Throughout a complex operation, such as the removal of
the CTB, each subtask implicitly defines constraints on the
motion of the robot. For example, approaching the CTB from
a distance (shown in Figure 4a) requires the definition of
a fixed link, i.e., a link on the robot that remains constant
in position and orientation throughout the duration of the
motion. Specifically, the constraints for the first motion of
the CTB removal operation would be defined as:

• The left leg end-effector is fixed.
• The goal constraint of the torso is such that the object’s

grasping points are reachable using the upper body’s
end-effectors.

• The right leg is positioned such that an automated
handrail rendezvous procedure can be used to affix the
end-effector to the handrail.

Previously, when using the MoveIt! interface, there existed
no method to quickly define a constraint derived the current
state of the robot. In order define a new constraint, the user
would first use an external tool to find the geometry of the
desired constraint in some reference frame. The user then
would programmatically construct the desired constraint using
an external application. Moreover, each time the robot moves
or grasps an object in a different manner, the constraint
would often need to be manually redefined and updated (i.e.,
repeat the aforementioned process after each motion). This
interface combats the tedious constraint re-definition process
by implementing a method for toggling fixed link constraints
that are automatically updated to the current state of the
robot. For example, this is extremely useful during a walking
task which requires multiple steps where R2 is switching
base frames from one gripper to the other, and each gripper
hold occurs at different positions within the environment.
This feature is also extended such that any arbitrary link can
be constrained in reference to any known coordinate frame
(e.g., the torso to world, right hand relative to left hand).
For example, during bimanual manipulation, the two grasp
points must remain constant to each other, as to not stretch,
contort, or destroy the object. This requires a constraint to
be defined between the two hands to keep their relative pose
constant, which must be updated to the current state of the
robot. This is demonstrated with the removal of the CTB

Fig. 2. Elements from the operation planning interface. a) The minimalist
front-page features a tabbed context with options designed to quickly switch
between planning for different parts of the robot, different planners, saved
goal states, toggles for the virtual model and path animation (shown in
f), and the plan and execute buttons (hidden, bottom center). b) The fixed
links selection menu adds constraints that fix each selected link at the link’s
current pose in the global frame. c) The enabled tip links selection menu is
used to toggle goal constraints for the specified end-effector link. d) The
path constraints selection menu is used to toggle defined constraints that are
to be satisfied for the duration of the generated path. e) Addition/removal
of constraints by defining position and orientation tolerances for a link in
a desired reference frame. More information about constraints is given in
Section IV. Constraints defined with this interface will be shown in d. f)
The virtual model of the current robot configuration (left), path animation
(center), and goal configuration (right).

from the storage rack (Figure 4c); this motion pulls the CTB
towards the robot’s chest to begin the removal process.

For certain motion planning requests, complex or multiple
goal regions and orientations may be allowed. This type
of request currently requires an external interface to define
the goal constraints, as this is not yet been integrated with
the intuitive drag-and-drop method described above. This
interface offers the ability to accept a remote plan request
from an external application and filter any the requests through
the active constraints defined in the GUI. This process will
intelligently append (i.e., search for and remove duplicates,
etc.) to the constraints already defined in the remote request.
This process ensures that any remote motion request will
attempt to satisfy the path and fixed link constraints that are
enabled in the GUI (Figure 2b, d).

B. Allowable Collision Matrix

During object manipulation, the robot will be required
to come in contact with objects; these collisions must be
considered during planning. There must exist a method to
toggle collision checking between various frames and/or
objects by modifying the Allowed Collision Matrix (ACM),
a matrix whose entries describe which frames are allowed to



collide with one another. However, although a programmatic
method for accessing and modifying entries in the ACM
is available, the MoveIt! motion planning interface does
not provide a method for an operator to modify the ACM
interactively. This interface provides a context menu to easily
configure and update the ACM by individually specifying
frames or groups of frames that are allowed to collide with
any given object (e.g., right index and middle finger may
collide with the CTB). Each of these allowable collisions must
be specified and updated before and/or after every subtask
throughout the entire operation. For example, the ACM must
also be updated when R2 releases a gripping end-effector
and traverses to another handrail. Note that the release of a
handrail signifies that the gripper can be commanded to its
next goal. However, collisions with the previously grappled
handrail are no longer acceptable.

C. Automation of Trivial Procedures

When generating a motion planning request, an operator
is required to specify the starting state of the robot as
well as the origin and size of the planning workspace, i.e.,
the search space in which the planner samples for valid
configurations. The dimensions of the planning workspace
should be optimized by the operator; specifying a workspace
that is too small may limit the ability of the planner to find
a valid path, while an overly large workspace will leave the
planner searching for valid configurations in inapplicable
locations and thus possibly increasing computation time.
During operation, as the robot traverses large distances, the
planning workspace of the robot must be updated; this often
requires re-centering of the workspace about the root of the
robot. This novel interface eliminates the repetitive steps
of specifying the starting state and origin of the planning
workspace for each motion. The start state of the robot is
continuously updated with the current state of the robot’s
joints. The origin of the planning workspace can be configured
to always be centered about a desired link (e.g., the base
link of the robot, or R2’s pelvis). This allows the origin of
the workspace to be automatically updated prior to passing
the motion request to the planner, eliminating the need to
manually update the origin and or provide arbitrarily large
dimensions for the workspace.

D. Virtual Objects

The use of a virtual object greatly augments our interface
by further eliminating repetitive tasks and implementing new
capabilities. Virtual objects, such as those described in [14]
can be used to define a set of goal and/or path constraints as
well as any allowable collisions (shown in Figure 4b, c). This
virtual object has a series of goal constraints, i.e., waypoints,
marked by floating end-effectors. These waypoints contain
embedded information not only limited to the position and
orientation for a desired end effector, but also details about
the allowable collisions. For instance, the waypoints that are
in contact with the virtual CTB object automatically update
the ACM to allow for collisions between R2’s fingers and the
CTB. Use of these virtual objects can further reduce the use

of the operator interface, therefore enabling the automation
of the subtasks.

IV. SPECIFYING AND SOLVING CONSTRAINTS

When specifying a subtask in an operation for a complex
system like R2, constraints naturally arise from high-level
requirements and low-level physical limits. Both requirements
and limits are represented in a unified constraint framework
that translates constraints into geometric limits on the robot.
As detailed in Section III, the developed interface provides a
way for users to enable/disable these constraints on the fly in
order to accomplish whatever subtask is at hand. This section
describes in more detail the types of constraints that arise for
many humanoid robot systems like R2. Constraint ordering
is discussed in the context of efficiently computing solutions
that satisfy all constraints. Finally, the novel planner and
how the constraint specification is used to enforce constraints
along the planned path is presented.

The CTB extraction scenario contains common, archetypal
examples of constraints that can be imposed on humanoid
systems. For example, in order to be stable in microgravity
when manipulating the CTB, it is necessary to attach both of
the grippers to handrails to take a strong stance. This fixes
the pose of the grippers, which creates a dependency in the
configuration of the legs when moving the torso. Similarly,
bimanual manipulation of the CTB creates a constraint
between the palms of R2’s hands, as they must maintain
a fixed relative pose with respect to each other to continue
to grip the bag. These constraints can be broken up into
two broad categories: global coordinate frame constraints and
relative coordinate frame constraints. Global constraints are
attached to the world frame and are invariant to the robot’s
configuration; the robot’s current configuration has no bearing
on the meaning of the constraint. Relative constraints are
attached to a frame on the robot’s structure, and change
their meaning in world coordinates as the robot changes
configurations. By defining a constraint of one frame on the
robot to another, an implicit linkage is defined that binds the
movement of the frames together. This posits a harder problem
to solve, but some tasks are impossible to specify using only
global frame constraints. There is no distinction between the
two types of constraints in the interface as they are defined
by the same set of parameters; methods that manipulate
constraints have no notion of whether the constraints are
relative or global. The semantic difference between global and
relative constraints occurs when projecting onto the constraint
manifold, discussed later in Section IV-B.

We define a constraint cji as a set of bounding volumes on
the position and orientation of a frame j attached to another
frame i of the robot. These constraint volumes are defined
as a subset of the robot’s configuration space where, at these
configurations, the constrained frame of the robot is within
some geometric bounds. The geometric bounds are defined as
either position or orientation volumes. Position volumes are
defined as geometric primitives such as rectangular prisms or
spheres, or arbitrary meshes. Orientation volumes are defined
as angular tolerances about the X-, Y-, and Z-axes of the base



frame. These volumes are defined within some base frame
as detailed above, either the world frame or a frame on the
robot. For the example constraint imposed during bimanual
manipulation, a tightly bounded orientation and position
volume is created from one palm of the hand to the other’s
grasped location. This keeps their relative pose consistent
throughout the path. The definition of a constraint is one way
to specify general geometric limitations on a frame of the
robot. It has the benefits of not prescribing the implementation
of the constraints, and allowing for definition of relative and
global constraints using the same set of parameters.

A. Ranking and Sorting Constraints

In order to solve a subtask with constraints, the configura-
tion of the robot must be made to satisfy each of the defined
limitations. Solving all constraints simultaneously is very
difficult, in part because the relative pose constraints create
dependencies between the constraints. To solve the problem
of planning with multiple constraints, the constraints must
first be ordered in a way that respects these dependencies. The
sorting step takes place after constraints have been selected
for the operation, but before the planner starts using the
constraints to solve the posed subtask. Simple conflicts in
the proposed set of constraints are detected during this step.
When sorting the constraints and building the structure of the
problem, over-constrained frames and redundant constraints
are found and then returned to the user so they can revise
their specification. Cyclic dependencies are not considered
and are explicitly disallowed when a subtask is specified. It
is left to future work to consider compositions of constraints
which could potentially affect each other.

The robot, when unconstrained, is modeled as a kinematic
tree. A kinematic tree is constructed of frames attached to the
robot and the relative transformations that chain successive
frames together. A kinematic tree has a root frame, which
all other frames in the tree descend from. For the purpose
of constraint sorting, the kinematic tree is formalized as
K = (F,R), where F is the set of all the robot’s frames
and (u, v) ∈ R is the relative transformation of a frame u to
frame v. It is assumed all frames in the tree are descended
from the root frame fR. A subtask for the robot is specified
as a set of goal constraints for frames from the kinematic
tree of the robot. Any number of frames can be selected to
have goal constraints. A goal configuration is a configuration
of the robot so that all goal constraints are satisfied. For
R2 to move through the environment, R2 must be affixed to
the structure of the ISS. This is modeled as a global frame
constraint with a tightly bounded constraint volume, and the
constrained frame becomes the root frame of the kinematic
tree. Generally, the root frame will be one of R2’s grippers if
executing a full body motion. The torso can also be used as
the root frame if executing exclusively upper-body movement.

Relative frame constraints depend on the configuration
of the robot, as their constraint volumes are defined with
respect to a frame of the robot. If a solution that satisfies
a relative constraint is found, and then another constraint is
solved for, the solution configuration may no longer satisfy

1: procedure CONSTRAINTSORT(K, fR, CG, CR)
2: KB ← (F,R ∪ { All edges in R reversed })
3: DfR ← Map of f ∈ F to distance from fR in KB

4: Sort CG in ascending order based on DfR

5: KR ← KB with an additional edge from fi to fj for
each relative constraint cji ∈ CR

6: k ← 0
7: DR ← Map of f ∈ F to ∞
8: for each global constraint cji ∈ CG in order do
9: Dc ← Map of f ∈ F to distance from fi in KR

10: DR ← Map of f ∈ F to the minimum value
of DR(f) and Dc(f) + k

11: k ← k + 1

12: Sort CR in ascending order based on DR

13: return CG + CR

Fig. 3. The constraint sorting procedure. This procedure takes as input
the kinematic tree of the robot K, the rooted frame fR, and the global and
relative constraints CG and CR. Line 2 builds KB , a bidirectional graph
with all edge from K, as well as those edges reversed. Line 5 builds KR,
which adds an edge to represent the constrained transformation for each
relative constraint. In the for loop starting on line 8, a map DR is computed
which contains the minimum distance of each frame f ∈ F to a globally
constrained frame. k is an index in the sorted global constraint list that gives
precedence to to frames closer to the root constraint.

the relative constraint. Constraints are ordered so that more
central constraints to the kinematic structure of the robot
are solved for first, and that global constraints are satisfied
before relative ones. For relative constraints, this means that
frames that could affect the pose of later frames are locked in
before solving dependent frames. The procedure for constraint
sorting is shown in Figure 3. The ordered constraints are
now used to assist the planner in exploring the constrained
configuration space of the robot.

B. Projection onto the Constraint Manifold

A key requirement of any constrained motion planner, in-
cluding the one used here, is the ability to find configurations
that satisfy the constraints. This is accomplished through a
projection routine offered by the constraints. Given a set of
constraints and a starting configuration, a nearby configuration
that satisfies the constraints using Jacobian Inverse Kinematics
(IK) is determined. Given a constrained frame and its desired
constraint volume, the frame is projected into the constraint
volume by first creating a twist vector in the workspace from
the frame’s current position to the center of the constraint
volume. The configuration of the robot is iteratively updated
until a solution is found using constrained frame’s Jacobian
to follow the twist vector. To account for multiple active
constraints, a hierarchical IK solver is used [15]. In the order
according to the sorting method detailed in Section IV-A,
the joint velocities from the constraints are projected into
the preceding constrained frame’s Jacobian’s null space. Null
space projection into the Jacobian adds joint velocities that
do not affect the result of the preceding velocity, which is
satisfactory under the assumption that the sorting has ordered
the constraints in such a way that each successive constraint



does not affect the previous solution. Singularity robustness is
maintained using the damped least-squares Jacobian pseudo-
inverse [16], [17]. This method is not complete, as during the
gradient descent in Jacobian IK the procedure can be caught
in local minima and fail to find a valid solution. An attempt to
avoid this is implemented by projecting random velocities into
the null space of the final Jacobian, and randomly restarting
gradient descent if little progress towards a solution is being
made.

Accounting for relative frame constraints is trickier, as
they are dependent on the configuration of the robot. To
accommodate these constraints, the IK solver satisfies relative
constraints incrementally. Due to constraint sorting, valid
configurations that satisfy each relative constraint successively
are found, as motion to solve the previous constraints does
not affect the constraints proceeding them. The projection
procedure first finds a configuration that satisfies all global
constraints using the IK solver described above. Iteratively,
one relative constraint is added to the IK problem, using the
current solution configuration as the starting point, and the
next configuration is found. For example, when bimanually
manipulating the CTB, the goal configuration is specified by
a global constraint on the right palm, and a relative constraint
from the right palm to the left palm. First, a valid configuration
of the robot that satisfies the global constraint of the right
palm is found. Other global constraints specified are solved
for simultaneously at this time. Next, the pose of the left palm
is found using the current pose of the right palm. This is then
repeated done for any number of other relative constraints
that may follow.

C. Subtask Planning

An operation such as the CTB extraction is composed of
many subtasks, each specified by the initial configuration
of the robot, the goal constraints on a set of frames, and
a set of path constraints that must be satisfied on every
waypoint in the path. Subtasks can be specified through the
interface by the operator, or scripted for longer sequences. The
sequence of waypoints in the path corresponds to successive
configurations of the robot from the initial configuration to
a goal configuration that satisfies the goal constraints. The
waypoint configurations satisfy the constraints, are collision-
free with obstacles in the workspace, and are within the joint
limits of the robot. R2 is assumed to be quasi-static, with
a nominal load capacity of nine kilograms. This frees the
planner from reasoning over the dynamics of the system,
so assumptions from geometric planning hold. R2 also
operates in a microgravity environment, and does not need
to consider problems like stability that are found in other
walking humanoids. Waypoints are not time-parameterized;
they are fed into a trajectory generator after planning to create
a continuous trajectory that the robot can execute which then
takes the dynamics of the robot into account. The controller
architecture for R2 is discussed in [18].

In order to plan under task constraints, a sampling-based
constrained motion planning algorithm is used [4]. [19]
presents prototypical components of constrained sampling-

based planners. The approach presented here is a modification
to the CBiRRT2 algorithm [20], using the described notion
of constraints. The planner only has access to one primitive
operation offered by the constraints, projection. The projection
routine takes a configuration of the robot and modifies it so
that the configuration satisfies the constraints, while still
preserving some of the locality of the configuration relative
to other configurations. Projection is used both in exploration
of the space and in the growth of the trees in CBiRRT2. An
interpolation method is used in order to generate additional
waypoints along the path which is critical to the success of
path generation. The path generated by the algorithm is a
rather coarse approximation of a complete path, and it is
possible for the trajectory generation algorithm to bridge
the gaps between waypoints with configurations that are
invalid. The splining or blending method employed by the
trajectory generation algorithm does not have knowledge of
the constraints, and could invalidate them when attempting to
smoothly connect waypoints. Interpolation refines the path as
a post-processing step, adding waypoints until a continuous
path is sufficiently approximated, while still respecting the
task constraints. The interpolated path is then fed to the
trajectory generator to create a continuous, valid trajectory.

V. CASE STUDY

In this section, analysis from the case-study of executing the
CTB retrieval scenario on the R2 hardware is presented. The
interface and execution is compared to previous approaches,
and improvements made and future work are discussed. The
software uses ROS, the Robot Operating System [21], as
communication middleware for the higher level planning
processes. The planner is implemented with the MoveIt! [13]
framework, using a planner implemented in OMPL, the
Open Motion Planning Library [22]. As R2 is designed for
microgravity environments, it cannot operate fully when under
Earth’s gravity. R2 is connected by a gimbal to the Active
Response Gravity Offload System (ARGOS) [23] at NASA-
Johnson Space Center. ARGOS allows R2 to achieve almost
full mobility and to traverse the simulated ISS handrail test
mock-up, shown in Figure 4. The ARGOS system allows
mobility along all three translation planes (the X-, Y-, and
Z-axes) but only one rotational degree-of-freedom about the
Z-axis, or yaw. The details of ARGOS relevant to the example
are discussed in Section V-B.

A. Cargo Transfer Bag (CTB) Manipulation

Figure 4 shows stills from a single execution of the CTB
scenario. The first part of the scenario is the approach phase,
where R2 moves from a stow position to in front of the
CTB (shown in Figure 4a). Planning for the motion to move
from start to a manipulation-ready pose has one of the most
common constraints used regularly by operators, as it must
be satisfied to move about in ARGOS. The relative constraint
is defined from the foot to the torso, which prevents the
torso from rotating about the X- and Y-axes. This satisfies
the constraint imposed on R2 by ARGOS so it can operate
on Earth. R2 next grasps another handrail with its right leg,



Fig. 4. A sequence of images showing R2 completing the CTB extraction scenario while in ARGOS. Hardware tests with R2 are done in the simulated
ISS handrail test mock-up at NASA-Johnson Space Center. a) R2 approaches the logistics module rack mockup that contains the CTB. It first must attach
its right leg to another handrail (below image cut) so it has sufficient leverage to undo the strap holding the CTB. b1) R2 mid-execution of a trajectory
planned to a goal pose relative to the CTB. b2) Operator’s view in the interface of the sensed location of the CTB and R2’s reported configuration. The
purple squares represent the fiducial tags on the CTB. The white box is the virtual object representing the CTB. The floating hands are a sequence of goal
poses for the hand to accomplish the task of grabbing the CTB. c1) R2 after finishing execution of a trajectory grabbing the CTB with its left hand. c2)
Operators view of the same moment as c1. d) R2 holding the retrieved CTB bag, returning to start.

creating a constraint on its motion. To begin the grasping
process, a goal is specified as a desired pose above the
handrail for the right foot, with the ARGOS constraints
still active. An autonomous docking script then controls the
descent of the grippers onto the handrail. Grasping both
handrails is done so R2 can have sufficient leverage to
unbuckle the strap containing the CTB, as well as stability
when manipulating the CTB. Without both legs down, the
force from pressing the button on the CTB is sufficient to bend
the leg slightly due to its compliance. Further motions moving
the arms around change the center of R2’s mass, which causes
drift in the pose of the torso as ARGOS compensates for the
change. Any further torso movement requires planning both
with the relative constraint imposed by the gimbal and the
constraint imposed by having both feet in fixed poses.

The CTB is secured in place by a five centimeter nylon band
and push-button mechanism akin to an automotive seat-belt.
The robot must first unclasp the restraint and then withdraw
the CTB from the rack. After unclasping, R2 must plan to grab
the forward facing strap on the CTB, shown in Figure 4(b1)
and (b2). The plans are done by using an extension to [14],
which defines goal poses relative to a frame in the world.
In this case, the desired series of motions is specified in
reference to the virtual CTB object shown in Figure 4(b2).
After grabbing the strap and pulling the CTB out, the other
hand grasps another strap, as shown in Figure 4(c1) and
(c2). After this point, R2 must bimanually manipulate the
CTB, introducing the problematic constraint first discussed in
Section II. Finally, R2 moves away from the logistics module
rack mockup to the starting position, this time with the CTB
in tow, as shown in Figure 4d.

B. Simulated Microgravity Climbing

Use of ARGOS [23] is essential for R2 to operate in
gravity, simulating the conditions of microgravity in space
on-board the ISS. ARGOS is coupled to R2 with a rigid

gimbal, yielding the requirement for the center of mass of
R2 to continuously maintain an almost-constant orientation
about the X- and Y-axes. A large movement about the X-
and Y-axes will exert excessive force on R2 through the
connection to ARGOS, causing a safety fault on the robot to
prevent further damage [24]. The requirement is satisfied by
creating a constraint on the torso with an orientation volume
with tight bounds about the X- and Y-axes, but allowing free
rotation about the Z-axis. Before the improvements to the
planner and specification to allow relative constraints, the
torso was orientation locked to the global X- and Y-axes. This
was brittle as slight orientation changes due to the gimbal and
ARGOS would cause invalid poses, and planning could not
be done unless manual calibration of the current offset was
done, a humongous time-sink for operators. The infrastructure
of this system allows operations in ARGOS without manual
specification of the constraint imposed. Moving away from
ARGOS into an actual microgravity environment, the con-
straint can now simply be removed and everything will operate
as expected. This greatly improves usability as constraints
can be phrased in the unified specification of the system.

C. Operator Usage

The interactivity of the system is key to the improved ability
of the operator to command the robot. Global and relative
constraints definition in interface, interactive positioning of the
goal poses, and automatic updating of constraints, poses, and
workspace based on state all require less effort by the operator
to define their mission. This process is opposed to the manual
steps that had to be taken without the interface. Each subtask
in an operation was individually crafted in order to account
its specific constraints or requirements, and movements in
ARGOS required careful hacks to avoid faulting R2. Each
constraint was crafted offline by using a script to lookup
frames, and required knowledge a priori of the relative poses
of the frames if a relative constraint was made. Goal poses



would be specified without knowledge of the robot state,
and feasibility is undetermined until the planning problem
fails. Using the current system and what it affords, the CTB
scenario can be completed on the order of five minutes. The
subtasks in the operation can be specified using constraints,
and utilization of the interface provides an interactive, quicker
means to develop valid plans rather than scripting in the
dark. An operation that would have required hours of near-
manual command by an operator can now be accomplished
in minutes.

VI. CONCLUSION AND FUTURE WORK

A system that allows human operators to efficiently specify
complex operations for Robonaut 2, a dexterous humanoid
robot, was presented. The system’s interface enables the
operator to interactively define constraints that automatically
update with the state of the robot, preview motion plans
that satisfy the constraints, and monitor the execution on the
actual hardware. When planning for subtasks in an operation,
the system ranks and sorts the constraints for an effective
projection routine that enables efficient motion planning. This
system is a first step towards the creation of co-robotic
assistants in space, helping astronauts on the International
Space Station and on future exploration missions.

There are several directions in which the existing work
will be expanded. In the near future the capability of virtual
objects in the interface will be increased through affordance
templates [14]. This will simplify operations that require
manipulation of objects. A longer-term goal is to increase
the autonomy of R2. Planning long operations for R2 is
currently tasked to the human operator, who plans the
sequence of subtasks necessary to complete an operation. In
the future, techniques from task planning could be employed
to automatically solve problems of discrete reasoning, such
as the path of handrails to walk on to reach a desired pose.
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